

BCH-003-001544

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

August - 2021

S - 503 : Statistical

(Statistical Inference) (Old Course)

Faculty Code: 003

Subject Code: 001544	
	Time : $2\frac{1}{2}$ Hours] [Total Marks : 70
	Instructions: (1) Scientific calculator is allowed. (2) Statistical table will be provided by Institute.
1. F i	Illing the blanks and short questions. (Each 1 mark) (20)
1.	Estimation is possible only in case of a
2.	A sample constant representing a population parameter is known as
3.	If T_n is an estimator of a parametric function $\tau(\theta)$, the mean square error of T_n is equal to
4.	$\sum \frac{X_i}{n}$ for $i = 1, 2, 3,, n$ is aestimator of population mean.
5.	For mean square error to be minimum, bias should be
6.	An estimator of $v_{\theta}(T_n)$ which attains lower bound for all θ is known as
7.	If $S = s(X_1, X_2, X_3,, X_n)$ is a sufficient statistic for θ of density $f(x; \theta)$ and $f(x_i; \theta)$ for
	$i=1,2,3,,n$ can be factorised as $g(s,\theta)h(x)$, then $s(X_1,X_2,X_3,,X_n)$ is a
8.	If a random sample $x_1, x_2, x_3,, x_n$ is drawn from a population $N(\mu, \sigma^2)$, the maximum likelihood estimate of σ^2 is
9.	For a Gama (x, α, λ) distribution with λ known, the maximum likelihood estimate of α is
10.	Maximum likelihood estimate of the parameter θ of the distribution $f(x,\theta) = \frac{1}{2}e^{- x-\theta }$ is
11.	is an unbiased estimator of p^2 in Binomial distribution.
12.	The estimate of the parameter λ of the exponential distribution $\lambda e^{-\lambda x}$ by the method of moments is
13.	For a rectangular distribution $\frac{1}{(\beta-\alpha)}$, the maximum likelihood estimates of α and β are smallest x and
	respectively.
14.	If $x_1, x_2, x_3,, x_n$ is a random sample from an infinite population and S^2 is defined as $\frac{\sum (x_1 - \bar{x})^2}{n}$,

BCH-003-001544]

unique, this is the

15. Let there be a sample of size n from a normal population with mean μ and variance σ^2 . The efficiency

16. Minimum Chi-square estimators are not necessarily 17. If a function f(t) of the sufficient statistics $T = t(x_1, x_2, x_3, ..., x_n)$ is unbiased for $\tau(\theta)$ and is also

 $\frac{n}{n-1}S^2$ is an _____ estimator of population variance σ^2 .

19. Sample mean is an and estimate of population mean. 20. If T_1 and T_2 are two MVU estimator for $T(\theta)$, then _____

16. Minimum Chi-square estimators are not necessarily_____

of median relative to the mean is _____.

18. If sufficient estimator exists, it is function of the

2(a) Write the answer any THREE (Each 2 marks)

(06)

- 1. Define Unbiasedness
- 2. Define Efficiency
- 3. Define Complete family of distribution
- 4. Define Uniformly Most Powerful Test (UMP test)
- 5. Define ASN function of SPRT
- 6. Find the Cramer Rao lower bound of variance of unbiased estimator of parameter of the probability distribution $f(x,\theta) = \theta e^{-\theta x}$

(b) Write the answer any THREE (Each 3 marks)

(09)

- 1. Obtain unbiased estimator of $\frac{kq}{p}$ of Negative Binomial distribution.
- 2. $\frac{\bar{x}}{n}$ is a consistent estimator of p for Binomial distribution.
- 3. Obtain MVUE of parameter θ for Poisson distribution. Also obtain its variance.
- 4. Obtain estimator of θ by method of moments in the following distribution

$$f(x;\theta) = \theta e^{-\theta x}$$
; where $0 \le x \le \infty$

- 5. Obtain Operating Characteristic (OC) function of SPRT.
- 6. Give a random sample $x_1, x_2, x_3, ..., x_n$ from distribution with p.d.f. $f(x; \theta) = \frac{1}{\theta}$; $0 \le x \le \theta$. Obtain power of the test for testing H_0 : $\theta = 1.5$ against H_1 : $\theta = 2.5$ where $c = \{x; x \ge 0.8\}$.

Write the answer any TWO (Each 5 marks)

(10)

- 1. State Crammer-Rao inequality and prove it.
- 2. Estimate α and β in the case of Gamma distribution by the method of moments

$$f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma \beta} e^{-\alpha x} x^{\beta - 1} ; x \ge 0, \alpha \ge 0$$

- 3. Obtain OC function for SPRT of Binomial distribution for testing H_0 : $p = p_0$ against $H_1: p = p_1(> p_0)$
- 4. Give a random sample $x_1, x_2, x_3, ..., x_n$ from distribution with p.d.f.

$$f(x;\theta) = \theta e^{-\theta x}$$
; $0 \le x \le \infty, \theta > 0$

Use the Neyman Pearson Lemma to obtain the best critical region for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$.

5. Obtain Likelihood Ration Test:

Let $x_1, x_2, x_3, ..., x_n$ random sample taken from $N(\mu, \sigma^2)$. To test $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$

3(a) Write the answer any THREE (Each 2 marks)

- 1. Define Consistency
- 2. Define Sufficiency
- 3. Define Minimum Variance Bound Estimator (MVBE)
- 4. Define Most Powerful Test (MP test)
- 5. Obtain likelihood function of Laplace distribution.
- 6. Obtain an unbiased estimator of θ by for the following distribution

$$f(x;\theta) = \frac{1}{\theta} \ ; 0 \le x < \theta$$

(b) Write the answer any THREE (Each 3 marks)

- 1. Let $x_1, x_2, x_3, ..., x_n$ be random sample taken from $N(\mu, \sigma^2)$ then find sufficient estimator of μ and σ^2 .
- 2. Obtain an unbiased estimator of population mean of χ^2 distribution.
- 3. Prove that $E\left(\frac{\partial logL}{\partial \theta}\right)^2 = -E\left(\frac{\partial^2 logL}{\partial \theta^2}\right)$ 4. If A is more efficience than B then prove that Var(A) + Var(B A) = Var(B)
- 5. Use the Neyman Pearson lemma to obtain the best critical region for testing H_0 : $\lambda = \lambda_0$ against $H_1: \lambda = \lambda_1$ in the case of Poisson distribution with parameter λ .
- 6. Let p be the probability that coin will fall head in a single toss in order to test H_0 : $p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 head are obtained. Find the probability of type-I error, type-II error and power of test.

(c) Write the answer any TWO (Each 5 marks)

(10)

- 1. State Neyman-Pearson lemma and prove it.
- 2. Obtain MVBE of σ^2 for Normal distribution $(0, \sigma^2)$.
- 3. If T_1 and T_2 be two unbiased estimator of θ with variance σ_1^2 , σ_2^2 and correlation ρ , what is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination?
- 4. For the double Poisson distribution

$$P(X = x) = \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0,1,2,....$$

Show that the estimator for m_1 and m_2 by the method of moment are $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - (\mu_1')^2}$ Construct SPRT of Poisson distribution for testing H_0 : $\lambda = \lambda_0$ against H_1 : $\lambda = \lambda_1 (> \lambda_0)$. Also obtain OC function of SPRT.